Spatial Analysis of Pulmonary Tuberculosis Risk in Surakarta, Central Java, Indonesia

Authors

  • Dinda Nabila Silva Diba Master’s Program in Public Health, Universitas Sebelas Maret
  • Bhisma Murti Master’s Program in Public Health, Universitas Sebelas Maret
  • Noor Alis Setiyadi Faculty of Health Science, Universitas Muhammadiyah Surakarta

DOI:

https://doi.org/10.26911/jepublichealth.2024.09.03.12

Abstract

Background: Pulmonary tuberculosis is an infectious disease, especially in developing countries. In 2022, the total number of tuberculosis cases in Indonesia was 677,464 cases. This study aims to conduct a spatial analysis of factors such as population size, population density, number of poor population, number of unemployed, healthy houses, and temperature to the number of pulmonary tuberculosis cases in the working area of health centers in Surakarta City in 2022.
Subjects and Method: Spatial analysis was carried out by descriptive analysis of distribution maps using QGIS, spatial cluster analysis using SaTScanTM, and autocorrelation analysis by Local Indicators of Spatial Autocorrelation (LISA) method using GeoDa. Secondary data was obtained from the public communication of the Central Statistics Agency of Surakarta and the Surakarta Health Profile in 2022. The analysis unit includes 17 working areas of health centers in Surakarta. The dependent variable is the TB cases. The independent variables were population density, number of poor people, number of unemployed, number of healthy houses, and temperature.
Results: The highest number of pulmonary TB cases were in Purwodiningratan Health Center and Sangkrah Health Center. There is the most likely cluster of pulmonary tuberculosis cases which is statistically significant in 2022 (Radius = 1.81 km; RR=17.65; p=0.003). Autocorrelation analysis showed E[I]=-0.06. There was a positive and significant spatial autocorrelation of the population (I=0.40; p=0.003), population density (I=0.33; p=0.002), number of poor people (I=0.40; p=0.002), number of unemployed (I=0.40; p=0.003), and temperature (I=0.25; p=0.009) of pulmonary TB cases in Surakarta.
Conclusion: Population number, population density, number of poor population, number of unemployed, and temperature have positive spatial autocorrelation with pulmonary TB.

Keywords:

Spatial analysis, SaTScan, GeoDa, pulmonary tuberculosis

Correspondence

Dinda Nabila Silva Diba. Master’s Program in Public Health, Universitas Sebelas Maret. Jl. Ir. Sutami 36A, Surakarta 57126, Central Java, Indonesia. Email: Dinda.silva.diba@student.uns.­ac.id. Mobile: 082268893633.

References

Achmadi UF (2014). Manajemen penyakit berbasis wilayah. Jakarta: Rajawali Press.

Anselin L (2005). Exploring spatial data with GeoDa™: a workbook. Urbana: Spatial Analysis Laboratory, Department of Geography.

Apolinário D, Ribeiro AI, Krainski E, Sousa P, Abranches A, Duarte R (2017). Tuberculosis inequality and socioeconomic deprivation in Portugal. Int J Tuberc Lung Dis. 21(7): 784-789. doi: 10.5588/ijtld.16.0907

Brunton LA, Alexander N, Wint W, Ashton A, Broughan JM (2017). Using geographically weighted regression to explore the spatially heterogeneous spread of bovine tuberculosis in England and Wales. Stoch Environ Res Risk Assess. 31(2): 339–352. doi: 10.1007/s00477-016-1320-9

Chen X, Emam M, Zhang L, Rifhat R, Zhang L, Zheng Y (2023). Analysis of spatial characteristics and geographically weighted regression of tuberculosis prevalence in Kashgar, China. Prev Med Rep. 35(71): 10356-102362. doi: 10.1016/j.pmedr.2023.102362

Dangisso MH, Datiko DG, Lindtjørn B (2020). Identifying geographical heterogeneity of pulmonary tuberculosis in Southern Ethiopia: a method to identify clustering for targeted interventions. Glob Health Action. 13(1): 1-13. doi: 10.1080/16549716.2020.1785737

Dinas Kesehatan Kota Surakarta (2022). Profil kesehatan Kota Surakarta tahun 2022. Surakarta: Dinas Kesehatan Kota Surakarta.

Escobar GC, Schwalb A, Lizarraga KT, Guerovich PV, Gil CU (2020). Spatio-temporal co-occurrence of hotspots of tuberculosis, poverty, and air pollution in Lima, Peru. Infect Dis Poverty. 9(32): 1-6. doi: 10.1186/s40249-020-00647-w

ESRI (2024). Download QGIS untuk Platform Anda, QGIS 3.34 ‘Prizren’. Available at: https://qgis.org/id/site/for-users/download.html

Elliott P, Wartenberg D (2004). Spatial epidemiology: current approaches and future challenges. Environ Health Perspect. 112(9): 998–1006. doi: 10.1289/ehp.6735

Google (2021). Download Google Earth. Available at: https://www.google.com/earth/versions/

Gould D, Brooker C (2013). Mikrobiologi terapan untuk perawat. Jakarta: EGC.

Helmy H, Kamaluddin MT, Iskandar I, Suheryanto (2022). Investigating spatial patterns of pulmonary tuberculosis and main related factors in Bandar Lampung, Indonesia using geographically weighted Poisson regression. Trop Med Infect Dis. 7(9): 212. doi: 10.3390/tropicalmed7090212

Inggarputri YR, Trihandini I, Novitasari PD, Makful MR (2023). Spatial analysis of tuberculosis cases diffusion based on population density in Bekasi Regency in 2017-2021. BKM Public Health Community Med. 39(1): 1–6. doi: 10.22146/bkm.v39i01.6462

Kementerian Kesehatan Republik Indonesia (2022). Profil kesehatan Indonesia 2022. Jakarta: Kementerian Kesehatan Republik Indonesia.

Kulldorff M (1997). A spatial scan statistic. Encyclopedia of GIS. 26(6): 1848–1848. doi: 10.1007/978-3-319-17885-1_101147

Kurniawati VM (2014). Analisis spasial persebaran kasus baru TB paru BTA positif domisili Surakarta yang diobati di BBKPM Surakarta 2013. Universitas Muhammadiyah Surakarta.

Kusumawati D, Prayitno A, Dharmawan R (2016). Geographical satellite and survey data for prediction of dengue cases in Sukoharjo, Indonesia. J Epidemiol Public Health. (1): 11-17. doi: 10.26911/jepublichealth.2016.01.01.02

Madao EP, Hermawati E, Putri NAA, Makful MR (2024). Evaluating spatial analysis of tuberculosis prevalence to identify priority districts or municipalities that need policy attention in West Java. BKM. 40(4): e12160. doi: 10.22146/bkm.v40i04.12160

Nahak ACK, Hinga IAT, Ndoen HI, Syamruth YK (2024). Spatial analysis of pulmonary tuberculosis incidence in Kupang City in 2019-2021. JPHTCR. 7(1): 83-95.

Nariswari NA (2022). Sistem informasi geografis faktor yang mempengaruhi jumlah kasus tuberkulosis di Provinsi Jawa Timur pada tahun 2018. PREVENTIF. 13(4): 558-568.

Nuraisyah F, Nurlaily N, Ruliyandari R, Irjayanti A, Irmanto M, Sugiarto (2022). Malaria surveillance mapping in Yogyakarta Special Region, Indonesia. J Epidemiol Public Health. 7(4): 562-572. doi: 10.26911/jepublichealth.2022.07.04.12

Noorcintanami S, Widyaningsih Y, Abdullah S (2021). Geographically weighted models for modeling the prevalence of tuberculosis in Java. J Phys Conf Ser. 1722(1): 1-9. doi: 10.1088/17426596/1722/1/012089

Noventy NNR, Suparta IW (2023). Pengaruh angka kemiskinan terhadap angka tuberkulosis di Indonesia (studi kasus 6 provinsi di pulau Jawa). J Educ. 6(1): 8066–8076.

Putra IGNE, Rahmaniati M, Sipahutar T, Eryando T (2022). Modeling the prevalence of tuberculosis in Java, Indonesia: an ecological study using geographically weighted regression. JPSS. 30(41): 741–763. doi: 10.25133/JPSSv302022.041

Sherman RL, Henry KA, Tannebaum SL, Feaster DJ, Kobetz E, Lee DJ (2014). Applying spatial analysis tools in public health: an example using SatScan to detect geographic targets for colorectal cancer screening interventions. Prev Chronic Dis. 11: 130264. doi: 10.5888/pcd11.130264

Sayidah D, Rahardjo SR, Murti B (2018). Individual and environmental risk factors of tuberculosis: a new evidence from Ponorogo, East Java. J Epidemiol Public Health. 3(3): 353-360. doi: 10.26911/jepublichealth.2018.03.03.06

Sihaloho ED, Alfarizy IL, Sagala EB (2019). Economic indicators and tuberculosis rates in regencies and cities in West Java. JIEP. 19(2): 128-138. doi: 10.20961/jiep.v19i2.33698

Tabilantang DE, Nelwan JE, Kaunang WPJ (2018). Analisis spasial distribusi tuberculosis paru basil tahan asam (BTA) positif di Kota Manado tahun 2015-2017. KESMAS. 7(4): 2018.

Wati DC, Lina IR (2023). Geographically weighted regression analysis with adaptive Gaussian in the social and economic fields for tuberculosis in South Sumatra 2020. J Stat Univ Muhammadiyah Semarang. 11(2): 22–30. doi: 10.14710/JSUNIMUS.11.2.22-30

WHO (2021a). Global Tuberculosis Report 2021. Geneva: World Health Organization.

Xu M, Li Y, Chen R, Sheng L, Yang S, Chen H, Hou J, Yuan L, Ke L, Fan M, Hu P (2020). Temperature and humidity associated with increases in tuberculosis notifications: a time-series study in Hong Kong. Epidemiol Infect. 149: e8. doi: 10.1017/S0950268820003040

Yuliana R, Rahmaniati M, Apriantini I, Triarjunet R (2022). Spatial autocorrelation analysis of dengue hemorrhagic fever cases in Padang City. JIK (J Ilmu Kesehat). 6(1): 34-42. doi: 10.33757/jik.v6i1.484.g210

Zebua HI, Jaya IGNM (2022). Spatial auto-regressive model of tuberculosis cases in Central Java Province 2019. CAUCHY. 7(2): 240–248. doi: 10.18860/ca.v7i2.13451.

Downloads

Published
2024-07-16

Issue
Vol. 9 No. 3 (2024)

Section
flow-chart-line Articles

How to Cite
Nabila Silva Diba, D., Murti, B., & Setiyadi, N. A. (2024). Spatial Analysis of Pulmonary Tuberculosis Risk in Surakarta, Central Java, Indonesia. Journal of Epidemiology and Public Health, 9(3), 386–406. https://doi.org/10.26911/jepublichealth.2024.09.03.12