Geographical Satellite and Survey Data for Prediction of Dengue Cases in Sukoharjo, Indonesia
Abstract
Background: Dengue fever is a disease based on environment and still a health problem. Problems related to the dengue fever vector distribution factor in terms of the spread of vector space with the use of geographic data and survey data in order to predict the incidence of dengue in the region.
Subjects and Methods: This study used analytic observational with cross sectional approach using modeling Geographical Information Systems (GIS). The sampling technique in this research is saturated sampling of secondary data Sukoharjo District Health Profile in 2011-2014, population data and data Geographic, then all the data were analyzed using multiple linear regression.
Results: There is a positive relationship between the area per Km2 with the number of new cases of dengue fever, although the relationship was not statistically significant. (B = <0:01; CI -0.01 - 0:02; p = 0.310). There is a positive relationship between population density per soul / Km2dengan number of new cases of dengue fever, a significant relationship between population density with DHF cases. (B = <0:01; CI <0:01 to 0:01; p = 0.013). There is a negative relationship between topography per masl by the number of new cases of dengue fever, although the relationship was not statistically significant. (B = <0:01; CI -0.02 - 0:01; p = 0.335). There is a positive correlation between rainfall per mm / yr with the number of new cases of dengue fever, although the relationship was not statistically significant. (B = <0:01; CI <0:01 to 0:01; p = 0101). There is a positive relationship between river flow per ha by the number of new cases of dengue fever, although the relationship was not statistically significant. (B = 0:02; CI -0.01 - 0:03; p = 0318). There is a negative correlation between% Non Flick figure by the number of new cases of dengue fever, although the relationship was not statistically significant. (B = <0:01; CI -0.02 - 0:01; p = 0764).
Conclusions: The increase in land area, population density, rainfall, river flow is predicted to affect the increase in dengue cases, whereas the increase ABJ predicted topography and affecting the decline of dengue cases in the district of Sukoharjo in 2011-2014.
Keywords: geographical data and survey data, prediction of dengue cases
Correspondence:
References
Achmadi UA (2010). Manajemen Demam Berdarah Berbasis Wilayah, Buletin Jendela Epidemiologi. (2) 15-20
Anonim (2010). Demam Berdarah Dengue Di Indonesia Tahun 1968-2009. Buletin Jendela Epidemiologi. (2) 1-14.
Brisbois BW, Ali SH (2010) . Climate Change, Vector-Borne Disease and Interdisciplinary Research: Social Science Perspectives on an Environment and Health Controversy. Ecohealth, Heidelberg: Springer.
Charter D, Agtrisari I (2004). Desain dan Aplikasi Geographics Information System. Jakarta: PT Elex Media Komputindo.
Devriany A (2012). Analisis Eko-Epidemiologi Status Endemisitas Demam Berdarah Dengue (DBD) Di Provinsi Sulawesi Selatan Tahun 2011. Jurnal Masyarakat Epidemiologi Indonesia. (1) 1.
EHP (2008). Dengue Reborn Widespread Resurgence of A Resilient Vector. Environmental Health Perspectives. (9) 116.
Fitriany RN, Vidyah Dini AM, Wulandari RA (2010). Faktor Iklim Dan Angka Insiden Demam Berdarah Dengue Di Kabupaten Serang, Makara, Kesehatan, 14 (1) : 31-38.
Hastono SP (2007). Analisis Data Kesehatan. Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia.
Kasjono HS (2011). Penyehatan Pemukiman, Gosyen Publising, Yogyakarta.
Kementerian Kesehatan Republik Indonesia (2011). Modul Pengendalian Demam Berdarah Dengue, Direktorat Jendral Pengendalian Penyakit Dan Penyehatan Lingkungan.
Kementerian Kesehatan Republik Indonesia (2012). Subdirektorat Pengendalian Arbovirosis Dit PPBB Ditjen PP dan PL.
Murti B (2013). Desain dan Ukuran Sampel untuk Penelitian Kuantitaif dan Kualitatif di Bidang Kesehatan, Yogyakarta: Gadjah Mada University Press.
Oishi K, Saito M, Mapua CA, Natividad FF (2007). Dengue Illnes: Clinical Features and Pathogenesis. Journal Infect Chemother. (13) 125-133.
Pangemanan J, Nelwan J (2009). Perilaku Masyarakat Tentang Program Pemberantasan Penyakit DBD, di Kabupaten Minahasa Utara, Jurnal FKM, Universitas Sam Ratulangi Manado.
Prahasta E (2002). Konsep-konsep Dasar Sistem Informasi Geografis. Bandung: Penerbit Informatika.
Radji M.(2010). Imunologi dan Serologi, Jakarta : PT ISFI Penerbitan.
Ririh Y, Anny V (2005). Hubungan Kondisi Lingkungan, Kontainer dan Perilaku Masyarakat Dengan Keberadaan Jentik Nyamuk Aedes aegypty Di Daerah Endemis DBD Surabaya, Jurnal Kesehatan Lingkungan (1)2.
Sitorus J (2003). Hubungan Iklim dengan Kasus Penyakit Demam Berdarah Dengue di Kotamadya Jakarta Timur tahun 1998-2002. Tesis. Fakultas Kesehatan Masyarakat, Universitas Indonesia.
Sri Rejeki. (2004). Tata Laksana Demam Berdarah Dengue Di Indonesia: Depkes RI, Direktorat Pemberantasan Penyakit Menular Dan penyehatan Lingkungan.
Sukowati S (2010). Masalah Vektor Demam Berdarah Dengue (DBD) dan Pengendaliannya di Indonesia, Buletin Jendela Epidemiologi. (2) 26-30.
Tri Yunis MW, Haryanto B, Mulyono S, Adiwibowo A (2010). Faktor-faktor Yang Berhubungan Dengan Kejadian Demam Berdarah dan Upaya Penanggulangannya di Kecamatan Cimanggis, Depok, Jawa Barat, Buletin Jendela Epidemiologi. (2) 31-43.
WHO (1997). Dengue Haemorrhagic Fever, Diagnosis, treatment, prevention and control. 21st edition. Geneva.
Yanti (2004). Hubungan Faktor-Faktor Iklim dengan Kasus Demam Berdarah Dengue di Kotamadya Jakarta Timur Tahun 2000-2004. Skripsi. Fakultas Kesehatan Masyarakat, Universitas Indonesia.
Yatim F (2007). Macam-macam Penyakit Menular dan Cara Pencegahannya. Jakarta : Pustaka Obor Populer.
Downloads
Issue
Vol. 1 No. 1 (2016)
Section
Articles