Malaria Surveillance Mapping in Yogyakarta Special Region, Indonesia

Fatma Nuraisyah, Nova Nurlaily, Rochana Ruliyandari, Apriyana Irjayanti, Maxsi Irmanto, Sugiarto Sugiarto

Abstract

Background: Kulon Progo is one of contributing malaria cases in Indonesia and eliminating incidence malaria still unsolved problem in Indonesia. This study aims to analyze the relationship between mosquito breeding sites, the distribution of malaria cases through Arc-GIS specifically for buffering and spatial analysis in Kulon Progo Regency from 2015 to 2021.
Subjects dan Method: This descriptive research retrospective approach was conducted from secondary data on malaria cases in Kulon Progo between 2015 and 2021. The variable research in this study are positive malaria cases diagnosed using the traditional method of thick blood and thin smear. The sampling technique in this study used total sampling, in totally 265 cases were included. The Data on malaria cases in Kulon Progo Health Office were used as instruments to develop the spatial map and questionnaires served as a confirmation sheet for demographic characteristic. GPS (Global Positioning System) 10.3 used to determine the coordinates of malaria cases. Data on malaria cases are presented in a six-year time series. Area classification using Arc-GIS 10.1 software with buffer analysis and visualization data was utilized to determine the distribution pattern of malaria.
Results: Incidence declined sharply 23.9 to 0.4 cases per 100,000 in 2015 to 2021. The purely cluster of malaria cases trend were in the watershed area at a distance of <250 meters in Kokap Sub-district. Malaria cases were mostly found in rice fields with a distance of <250 meters in Samigaluh Sub-district. All malaria cases were in the garden areas of <250meters in Nanggulang and the forest area of >250 meters in the Kalibawang Sub-district.
Conclusion: Probability of malaria transmission are rivers, rice fields and gardens. It is necessary to hold training on the use of the Arc-GIS application for surveillance officers.
Keywords: Gis, malaria, mapping, surveillance.

Correspondence: Fatma Nuraisyah, Faculty of Public Health, Universitas Ahmad Dahlan, Indonesia. Kapas street No. 9, Semaki, Special Region of Yogyakarta, Post Box: 55166; email: fatma.nuraisyah@ikm.uad.ac.id. Mobile: 6285747232100.

Journal of Epidemiology and Public Health (2022), 07(04): 562-572
https://doi.org/10.26911/jepublichealth.2022.07.04.12.

Full Text:

PDF

References

Adeola AM, Botai OJ, Olwoch JM, Rauten-bach CJD, Adisa OM, Taiwo OJ, Kalumba AM (2016). Environmental factors and population at risk of malaria in Nkomazi municipality, South Africa. Trop Med Int Health. 21(5): 675–686. doi: 10.1111/tmi.12680.


Adlaoui E, Faraj C, El-Bouhmi M, El-Aboudi A, Ouahabi S, Tran A, Fontenille D, et al. (2011). Mapping Malaria Transmission Risk in Northern Morocco Using Entomological and Environmental Data. Malar Res Treat. 2011: 9. doi: 10.4061/2011/391463.


Argaw MD, Woldegiorgis AG, Workineh HA, Akelom BA, Abebe ME, Abate DT, Ashenafi EG (2021). Access to malaria prevention and control interventions among seasonal migrant workers: A multi-region formative assessment in Ethiopia. PLOS ONE. 16(2): 1–15. doi: 10.1371/journal.pone.0246251.


Balicer RD, Luengo-Oroz M, Cohen-Stavi C, Loyola E, Mantingh F, Romanoff L, Galea G (2018). Using big data for non-communicable disease surveillance. Lancet Diabetes Endocrinol. 6(8): 595–598. doi: 10.1016/S2213-8587(1-7)30372-8.


Booman M, Sharp BL, Martin GL, Manjate B, Grange JJL, Durrheim DN (2003). Using a geographical information system to plan a malaria control program in South Africa. Malar J. 78(12): 1438–1441. doi: 10.1186/1475-2875-2-13.


Brock PM, Fornace KM, Grigg MJ, Anstey NM, William T, Cox J, Drakeley CJ, et al. (2019). Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc Royal Soc B. 286(1894): 2–3. doi: 10.1098/rspb.2018.2351.


Brownson RC, Fielding JE, Maylahn CM (2009). Evidence-Based Public Health: A Fundamental Concept for Public Health Practice. Annu Rev Public Health. 30(1): 175–201. doi: 10.1146/annurev.publhealth.031308.100134.


Chaiphongpachara T, Yusuk P, Laojun S, Kunphichayadecha C (2018). Environmental Factors Associated with Mosquito Vector Larvae in a Malaria-Endemic Area in Ratchaburi Province, Thailand. Sci World J. doi: 10.1155/2018/4519094.


Dambach P, Sié A, Lacaux J, Vignolles C, Machault V, Sauerborn R (2009). Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district, Burkina Faso. Glob Health Action. 2(1): 1–6. doi: 10.3402/gha.v2i0.2094.


Diuk-Wasser MA, Bagayoko M, Sogoba N, Dolo G, Touré MB, Traoré SF, Taylor CE (2007). Mapping rice field anopheline breeding habitats in Mali, West Africa. Int J Remote Sens. 25(2): 359–376.


Djamouko-Djonkam L, Mounchili-Ndam S, Kala-Chouakeu N, Nana-Ndjangwo SM, Kopya E, Sonhafouo-Chiana N, Talipouo A, et al. (2019). Spatial distribution of Anopheles gambiae sensu lato larvae in the urban environment of Yaoundé, Cameroon. Infect Dis Poverty. 8(85): 2–15. doi: 10.1186/s4-0249-019-0597-6.


Gómez‑Barroso D, García‑Carrasco E, Herrador Z, Ncogo P, Romay‑Barja M, Mangue MEO, Nseng G, et al. (2017). Spatial clustering and risk factors of malaria infections in Bata district, Equatorial Guinea. Malar J. 16(146): 1–9. doi: 10.1186/s12936-017-1794-z.


Gouagna LL, Jean DS, Romain G, Sebas-tiaen B, Guy L, Fontenille, Didier, et al. (2011). Spatial and temporal distribution patterns of Anopheles arabiensis breeding sites in La Reunion Island - multi-year trend analysis of historical records from 1996-2009. Parasiter Vectors. 4(121): 2–14. doi: 10.1186/1756-3305-4-121.


Hanifati A, Adhina, Anggi P, Dian M, Wulandari E, Dita, Ratnasari D, et al. (2018). Application of Remote Sensing and GIS for Malaria Disease Susceptibility Area Mapping in Padang Cermin Sub-District , District of Pesawaran, Lampung Province. Environ Earth Sci. 165: 1–10. doi: 10.1088/1755-1315/165/1/012012.


Hasyim H, Nursafingi A, Haque U, Montag D, Groneberg DA, Dhimal M, Kuch U, et al. (2018). Spatial modelling of malaria cases associated with environmental factors in South Sumatra, Indonesia. Malar J. 87(2018): 1–15. doi: 10.1186/s12936-018-2230-8.


Health of Kulon Progo District Departement (2020) Public Health of Kulon Progo District Departement 2019.


Hou SI (2011). Review: Evaluating Public and Community Health Programs. Health Promot Pract. 12(5): 641–644. doi: 10.1177/1524839911421197.


Ihantamalala FA, Rakotoarimanana FMJ, Ramiadantsoa T, Rakotondramanga JM, Pennober G, Rakotomanana F, Cauchemez S, et al. (2018). Spatial and temporal dynamics of malaria in Madagascar. Malar J. 17(58): 1–13. doi: 10.1186/s12936-018-2206-8.


Khashoggi B, Abdulkader M (2020) Issues of Healthcare Planning and GIS: A Review. Int J Geogr. 9: 2–24. doi: 10.3390/ijgi9060352.


Kifle MM, Teklemariam TT, Teweldeberhan AM, Tesfamariam EH, Andegiorgish AK, Kidane EA (2019). Malaria Risk Stratification and Modeling the Effect of Rainfall on Malaria Incidence in Eritrea. J Environ Health. doi: 10.1155/2019/7314129.


Lavoie PM, Popescu CR, Molyneux EM, Wynn JL, Chiume M, Keitel K, Lufesi N, et al. (2019). Rethinking management of neonates at risk of sepsis. Lancet. 394(10195): 279–281. doi: 10.1016/S0140-6736(19)31627-7.


Lin H, Lu L, Tian L, Zhou S, Wu H, Bi Y, Ho SC, et al. (2009). Spatial and temporal distribution of falciparum malaria in China. Malar J. 8: 1–9. doi: 10.1186/1475-2875-8-130.


Lwanga SK, Stanley L, WHO (1991). Sample size determination in health studies: a practical manual / S. K. Lwanga and S. Lemeshow. World Health Organization.


MMV (2018). World Malaria Report 2018. Available at: https://www.mmv.org/newsroom/publications/world-malaria-report-2018.


Ministry of Public Health Indonesia (2018) Basic of Health Research. Jakarta: Ministry of Public Health Indonesia.


Ndiath MM, Cisse B, Ndiaye JL, Gomis JF, Bathiery O, Dia AT, Gaye O, Faye B (2015). Application of geographically-weighted regression analysis to assess risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. Malar J. 14(463): 1–11. doi: 10.1186/s12936-015-0976-9.


Ndiath M, Faye B, Cisse B, Ndiaye JL, Gomis JF, Dia AT, Gaye O (2014). Identifying malaria hotspots in Keur Soce health and demographic surveillance site in context of low transmission. Malar J. 13(453):1–8.


Obsomer V, Defourny P, Coosemans M (2007). The Anopheles dirus complex: spatial distribution and environmental drivers. Malaria J. 6(26): 1–16. doi: 10.1186/1475-2875-6-26.


Olalubi OA, Salako G, Adetunde OT, Sawyerr HO, Ajao M, Tambo E (2020). Geospatial Modeled Analysis and Laboratory Based Technology for Determination of Malaria Risk and Burden in a Rural Community. Int j trop dis health. 41(8): 59–71. doi: 10.9734/ijtdh/2020/v41i830312.


Parker DM, Tripura R, Peto TJ, Maude RJ, Nguon C, Chalk J, Sirithiranon P, et al. (2017). A multi-level spatial analysis of clinical malaria and subclinical Plasmodium infections in Pailin. Heliyon. 3 (2017) e00447. doi: 10.1016/j.heliyon.2017.e00447.


Pergantas P, Tsatsaris A, Malesios C, Kriparakou G, Demiris N, Tselentis Y (2017). A spatial predictive model for malaria resurgence in central Greece integrating entomological, environmental and social data. PLoS ONE 12(6): e0178836. doi: 10.1371/journal.pone.0178836.


Public Health Bantul District Departement. (2018). Public Health Profile 2018. Bantul: Public Health Bantul District Departement.


Public Health Kulon Progo District Departement (2020). Public Profil 2020. Kulon Progo: Public Health Kulon Progo District Departement.


Rakotomanana F, Randremanana RV, Rabarijaona LP, Duchemin JB, Ratovonjato J, Ariey F, Rudant JP et al. (2007). Determining areas that require indoor insecticide spraying using Multi Criteria Evaluation, a decision-support tool for malaria vector control programmes in the Central Highlands of Madagascar. Int J Health Geogr. 11: 1–11. doi: 10.1186/1476-072X-6-2.


Rezaianzadeh A, Zare M, Aliakbarpoor M, Faramarzi H, Ebrahimi M (2020). Space-Time Cluster Analysis of Malaria in Fars Province Iran. Int J Infect. 7(3):e107238. doi: 10.5812/iji.107238.


Rohani A, Ali WNWM, Nor ZM, Ismail Z, Hadi AA, Ibrahim MN, Lim LH (2011). Mapping of mosquito breeding sites in malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia. Malar J. 10(361): 2–8. doi: 10.1186/1475-2875-10-361.


Samson BA, Gayawan E, Heumann C, Seiler C (2016). Spatial and Spatio-temporal Epidemiology Joint modeling of Anemia and Malaria in children under five in Nigeria. Spat Spatiotemporal Epidemiol. 17: 105–115. doi: 10.1016/j.sste.2016.04.011.


Shi B, Zheng J, Qiu H, Yang G, Xia S, Zhouet X (2017). Risk assessment of malaria transmission at the border area of China and Myanmar. Infect Dis Poverty. 108 (2017). doi: 10.1186/s40249-017-0322-2.


Shirayama Y, Phompida S, Shibuya K (2009). Geographic information system ( GIS ) maps and malaria control monitoring: intervention coverage and health outcome in distal villages of Khammouane province, Laos. Malar J. 8: 1–8. doi: 10.1186/1475-2875-8-217.


Simangaliso C, Eutasius M (2016). Spatial and socio-economic effects on malaria morbidity in children under 5 years in Malawi in 2012. pat Spatiotemporal Epidemiol. 16: 1–13. doi: 10.1016/j.sste.2015.11.001.


Sluydts V, Heng S, Coosemans M, Roey KV, Gryseels C, Canier L, Kim S, et al. (2014). Spatial clustering and risk factors of malaria infections in Ratanakiri Province, Cambodia. Malar J. 13: 2–10. doi: 10.1186/1475-2875-13-387.


Sullivan O, Kenilorea G, Yamaguchi Y, Bobogare A, Losi L, Atkinson J, Vallely A, et al. (2011). Malaria elimination in Isabel Province, Solomon Islands: establishing a surveillance-response system to prevent introduction and reintroduction of Malaria elimination in Isabel Province, Solomon Islands: establishing a surveillance-response sy. Malar J. 10(1): 235. doi: 10.1186/1475-2875-10-235.


Sriwichai P, Karl S, Samung Y, Sumruayphol S, Kiattibutr K, Payakkapol A, Mueller I, et al. (2015). Evaluation of CDC light traps for mosquito surveillance in a malaria endemic area on the Thai-Myanmar border. Parasites Vectors. 8(636). doi: 10.1186/s13071-015-1225-3.


Wangdi K, Banwell C, Gatton ML, Kelly GC, Namgay R, Clements ACA (2016). Development and evaluation of a spatial decision support system for malaria elimination in Bhutan. Malar J. 15(180): 1–13. doi: 10.1186/s12936-01-6-1235-4.


Wangdi K, Canavati SE, Ngo TD, Tran LK, Nguyen TM, Tran DT, Martin NJ, et al. (2018). Analysis of clinical malaria disease patterns and trends in Vietnam 2009 – 2015’, Malar J. 17(332): 1–15. doi: 10.1186/s12936-018-2478-z.


WHO (2021) World Malaria Report 2021, Word Malaria report Geneva: World Health Organization.


WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and control : new edition. Available at: https://apps.who.int/iris/handle/10665/44188.


WHO (2020) World Malaria Report 2020, World Malaria Report 2020. Available at: https://www.mmv.org/newsroom/publications/world-malaria-report-2020.


Zayeri F, Salehi M, Pirhosseini H (2011). Geographical mapping and Bayesian spatial modeling of malaria incidence in Sistan and Baluchistan province, Iran. Asian Pac J Trop Med. 4(12): 985–992. doi: 10.1016/S1995-7645(1-1)60231-9.

Refbacks

  • There are currently no refbacks.