The Use of Insecticide Mosquito Nets and Insecticide Spraying on the Risk of Malaria in Children: A Meta-Analysis

Arlina Azka¹, Setyo Sri Rahardjo², Bhisma Murti¹

¹Masters Program in Public Health, Universitas Sebelas Maret
²Faculty of Medicine, Universitas Sebelas Maret

ABSTRACT

Background: Malaria is a vector-borne disease caused by Plasmodium infection and there are more than 30 species of Anopheles which are important vectors of malaria. The main interventions recommended for controlling malaria vectors are the use of insecticide mosquito nets and indoor residual spraying. This study aims to estimate the effect of using insecticide mosquito nets and spraying insecticides on the risk of malaria in children.

Subjects and Method: This was a meta-analysis study using PRISMA flow diagram guidelines. Article searches were carried out in the PubMed, Google Scholar, Science Direct, ResearchGate, and SpringerLink databases with the keywords “risk factor” OR determinant AND malaria AND “insecticide treated net” OR “insecticide treated bednets” OR “bed net” OR “indoor spraying” OR “insecticide spraying” OR “indoor residual spraying” AND “toddlers”. The study problem is formulated by using the PICO model: the population are toddlers, the sleep intervention using insecticide mosquito nets and lives in homes receiving insecticide spraying, comparison is sleeping without using insecticide mosquito nets and living in homes that do not receive insecticides, and the outcome is malaria. Inclusion criteria include full-text articles with cross-sectional design, published in 2010–2021, and there are multivariate analysis results in the form of adjusted odds ratio values. Data were analyzed using RevMan 5.3 application.

Results: Fourteen articles from Tanzania, Nigeria, Uganda, Rwanda, Burkina Faso, Zambia, Malawi, Cameroon, Ethiopia, the Democratic Republic of Congo, and other countries in Sub-Saharan Africa shows that children who sleep using insecticide net have a lower risk by 15% to become infected with malaria (aOR=0.85; CI 95%=0.75 to 0.98; p=0.020). Eight research articles from Zambia, Tanzania, Uganda, Nigeria, Sierra Leone, and Ethiopia showed that children living in homes sprayed with insecticides have lower risk by 37% to become infected with malaria (aOR=0.63; CI 95%=0.49 to 0.79; p<0.001).

Conclusion: The use of insecticide mosquito nets and insecticide spraying reduces the risk of malaria in children.

Keywords: insecticide mosquito nets, insecticide spraying, malaria, children

Correspondence:

Cite this as:

Journal of Epidemiology and Public Health is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

BACKGROUND

Malaria is an infectious disease caused by the plasmodium parasite and is transmitted through the bite of a female Anopheles sp infected vector by plasmodium. Nearly half of the world's population is at risk of becoming infected with malaria (WHO, 2021). The global malaria incidence in 2019 was 57 per 1,000 population at risk. The mortality rate for toddlers is still quite high,
which reaching 67% of the total 409,000 deaths in 2019 (WHO, 2020).

The distribution of cases and the level of malaria endemicity are strongly influenced by the presence of the infectious vector. There are more than 400 species of Anopheles mosquitoes in the world and about 30 of them are important vectors of malaria (WHO, 2021). These mosquitoes begin to bite actively soon after dark, with high biting activity that differs for each species and is influenced by geographic location (Debebe et al., 2018). The presence of adult Anopheles activity in the house at night indicates the need for using insecticide mosquito nets for sleeping and spraying insecticides inside the house (Animut and Negash, 2018).

The use of insecticide nets and indoor residual spraying are the main interventions in malaria control that are recommended for all at-risk populations (WHO, 2019). This method is effective in preventing malaria transmission and reducing deaths. Based on estimates of the annual number of clinical malaria cases prevented by vector control interventions in Madagascar, the use of mosquito nets and insecticide spraying was able to prevent more than 100,000 cases in one year. There are 88% of cases that can be prevented by using insecticide-treated mosquito nets and as many as 12% of cases can be prevented by spraying insecticides (Kesteman et al., 2016).

The use of insecticide nets and insecticide spraying has been shown to have an effect on malaria infection. Comprehensive research and sourced from various primary studies is needed to estimate the magnitude of the influence of these two factors. This study aims to estimate the effect of using insecticide mosquito nets and insecticide spraying on the risk of malaria in children.

SUBJECTS AND METHOD

1. Study Design

This study uses a systematic review and meta-analysis design. Article searches were conducted on several databases, including PubMed, Google Scholar, Science Direct, ResearchGate, and SpringerLink. The keywords used are “risk factor” OR determinant AND malaria AND “insecticide treated net” OR “insecticide treated bednets” OR “bed net” OR “indoor spraying” OR “insecticide spraying” OR “indoor residual spraying” AND “toddler”.

2. Inclusion Criteria

The inclusion criteria used are full-text articles with cross-sectional design, published from 2010 to 2021, and there are multivariate analysis results in the form of adjusted odds ratio values.

3. Exclusion Criteria

The exclusion criteria in this study were articles that were not in English and Indonesian and articles that had been included in the previous meta-analysis.

4. Operational Definition

The study problem in this meta-analysis is formulated in the PICO model. The study population are toddlers. The interventions are sleeping using an insecticide mosquito net and staying at home with insecticide spraying (indoor residual spraying) with a comparison of sleeping without an insecticide mosquito net and staying at home that did not receive insecticide spraying. The study outcome is the incidence of malaria.

The use of insecticide net is children who sleep under an insecticide mosquito net attached to the bed at least the night before the investigation. **Insecticide spraying** is spraying insecticide liquid on walls or other surfaces in the house at least once in the last 12 months before the study is carried out.
Malaria is a plasmodium parasite infection that causes symptoms or does not cause symptoms, which is known through blood examination and the presence of malaria parasites or malaria parasite antigens in the blood is found.

5. Study Instrument
The study was conducted according to the PRISMA flow diagram guidelines and the assessment of study quality was carried out using a critical appraisal for cross-sectional study checklist from the Center for Evidence-Based Management (CEBMa, 2014).

6. Data Analysis
The study data were analyzed by using the RevMan 5.3 application by calculating the effect size and heterogeneity of the study data to determine the analytical model used, namely the random effect model or the fixed effect model. The results are presented in the form of forest plots and funnel plots.

RESULTS
The process of selecting and reviewing articles using the PRISMA flow diagram can be seen in Figure 1. A total of 16 articles sourced from the African continent were declared eligible and included in this meta-analysis.

Figure 1. PRISMA flow diagram

1. The effect of using insecticide mosquito nets on the risk of malaria in children

A total of 14 articles from Tanzania, Nigeria, Uganda, Rwanda, Burkina Faso, Zambia, Malawi, Cameroon, Ethiopia, Democratic Republic of Congo, and other
countries in Sub-Saharan Africa were included in the meta-analysis (see Table 1 and 2). Based on the forest plot (Figure 2), the results showed that children who slept using insecticide mosquito nets had a 15% lower risk of becoming infected with malaria than children who slept without using insecticides mosquito nets (aOR = 0.85; 95% CI = 0.75 to 0.98; p = 0.020). The funnel plot (Figure 3) showed that there was a publication bias in this study which was known from the asymmetric distribution of the plots. The estimated effect size on the effect of using insecticide-treated bed nets on the risk of malaria in children exceeded the actual effect size (overestimate).

![Figure 2. Forest Plot of the effect of using insecticide mosquito nets on the risk of malaria in children](image-url)

![Figure 3. Funnel plot of the effect of using insecticide mosquito nets on the risk of malaria in children](image-url)
Table 1. Description of the primary article on the use of insecticide mosquito nets

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Country</th>
<th>Study Design</th>
<th>Sample</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparison</th>
<th>Outcome and Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mushashu (2012)</td>
<td>Tanzania</td>
<td>Cross-sectional</td>
<td>391</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria</td>
</tr>
<tr>
<td>Siri (2014)</td>
<td>Countries in Sub-Saharan Africa</td>
<td>Cross-sectional</td>
<td>34,137</td>
<td>Toddlers</td>
<td>Children sleep using insecticide mosquito nets</td>
<td>Children sleep without using insecticide mosquito nets</td>
<td>Malaria Blood laboratory tests</td>
</tr>
<tr>
<td>Iwuafor et al.</td>
<td>Nigeria</td>
<td>Cross-sectional</td>
<td>270</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Microscopic examination of thick and thin blood smears</td>
</tr>
<tr>
<td>Odugbemi et al.</td>
<td>Nigeria</td>
<td>Cross-sectional</td>
<td>480</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Rapid Diagnostic Test (RDT)</td>
</tr>
<tr>
<td>Wanzira et al.</td>
<td>Uganda</td>
<td>Cross-sectional</td>
<td>4,930</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Microscopic examination of thick and thin blood smears</td>
</tr>
<tr>
<td>Dahiru et al.</td>
<td>Nigeria</td>
<td>Cross-sectional</td>
<td>6,632</td>
<td>Children aged 6-59 months</td>
<td>Children sleep using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Microscopic examination</td>
</tr>
<tr>
<td>Morakinyo et al.</td>
<td>Nigeria</td>
<td>Cross-sectional</td>
<td>6,991</td>
<td>Children aged 6-59 months</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Microscopic examination of thick and thin blood smears</td>
</tr>
</tbody>
</table>

www.jepublichealth.com
<table>
<thead>
<tr>
<th>Author (Year)</th>
<th>Country</th>
<th>Study Design</th>
<th>Sample</th>
<th>Population</th>
<th>I Intervention</th>
<th>C Comparison</th>
<th>Outcome and Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyirakananani et al. (2018)</td>
<td>Rwanda</td>
<td>Cross-sectional</td>
<td>222</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Microscopic examination of thick blood smears</td>
</tr>
<tr>
<td>Nawa et al. (2019)</td>
<td></td>
<td>Cross-sectional</td>
<td>10,131</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Microscopic examination</td>
</tr>
<tr>
<td>Chilanga et al. (2020)</td>
<td>Malawi</td>
<td>Cross-sectional</td>
<td>523</td>
<td>Children aged 2-59 months Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Rapid Diagnostic Test (RDT) Malaria Microscopic examination</td>
</tr>
<tr>
<td>Isah et al. (2020)</td>
<td>Cameroon</td>
<td>Cross-sectional</td>
<td>391</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Microscopic examination of thick blood smears</td>
</tr>
<tr>
<td>Ahmed et al. (2021)</td>
<td>Ethiopia</td>
<td>Cross-sectional</td>
<td>356</td>
<td>Toddlers</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets</td>
<td>Malaria Rapid Diagnostic Test (RDT) Malaria Microscopic examination</td>
</tr>
<tr>
<td>Emina et al. (2021)</td>
<td>Democratic Republic of Congo</td>
<td>Cross-sectional</td>
<td>8,547</td>
<td>Children aged 6-59 months</td>
<td>Using insecticide mosquito nets</td>
<td>Not using insecticide mosquito nets at night</td>
<td>Malaria Microscopic examination of thick blood smears</td>
</tr>
</tbody>
</table>
2. The effect of insecticide spraying on the risk of malaria in children

A total of 8 study articles from Zambia, Tanzania, Uganda, Nigeria, Sierra Leone, and Ethiopia were included in the meta-analysis (see Table 3). The forest plot (Figure 4) showed that children living in homes that were sprayed with insecticides had a 37% less risk of becoming infected with malaria than children who lived in homes without insecticides spraying (aOR=0.63; 95% CI=0.49 to 0.79; p<0.001). In the funnel plot (Figure 5), it is known that the distribution of the plot is asymmetric which indicates a slight publication bias. The estimated effect size on the effect of insecticide spraying on the risk of malaria in children exceeded the actual effect size (overestimate).

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log(Odds Ratio)</th>
<th>SE</th>
<th>Weight</th>
<th>Odds Ratio IV, Fixed, 95% CI</th>
<th>Odds Ratio IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed et al. 2021</td>
<td>-0.734</td>
<td>0.9142</td>
<td>1.7%</td>
<td>0.43 [0.08, 2.88]</td>
<td></td>
</tr>
<tr>
<td>Ban 2020</td>
<td>-0.5798</td>
<td>0.4115</td>
<td>8.4%</td>
<td>0.56 [0.25, 1.25]</td>
<td></td>
</tr>
<tr>
<td>Dahiru et al. 2018</td>
<td>-1.7148</td>
<td>0.7574</td>
<td>2.4%</td>
<td>0.18 [0.04, 0.81]</td>
<td></td>
</tr>
<tr>
<td>Morakinyo et al. 2018</td>
<td>-0.1863</td>
<td>0.3355</td>
<td>12.6%</td>
<td>0.83 [0.43, 1.60]</td>
<td></td>
</tr>
<tr>
<td>Mushashu 2012</td>
<td>-0.5447</td>
<td>0.4966</td>
<td>5.0%</td>
<td>0.56 [0.22, 1.43]</td>
<td></td>
</tr>
<tr>
<td>Nkya et al. 2019</td>
<td>-0.4155</td>
<td>0.152</td>
<td>61.5%</td>
<td>0.66 [0.49, 0.88]</td>
<td></td>
</tr>
<tr>
<td>Riedel et al. 2013</td>
<td>0.5401</td>
<td>0.7223</td>
<td>2.7%</td>
<td>1.73 [0.42, 7.13]</td>
<td></td>
</tr>
<tr>
<td>Worzala et al. 2017</td>
<td>-1.4977</td>
<td>0.6389</td>
<td>4.9%</td>
<td>0.23 [0.09, 0.58]</td>
<td></td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td></td>
<td></td>
<td>100.0%</td>
<td>0.63 [0.49, 0.79]</td>
<td></td>
</tr>
</tbody>
</table>

Heterogeneity: Chi²= 9.08, df = 7 (p = 0.25), I² = 23%
Test for overall effect Z = 3.94 (p < 0.001)

Figure 4. Forest Plot of the Effect of Insecticide Spraying (Indoor Residual Spraying) on the Risk of Malaria in Children

Figure 5. Funnel Plot of the Effect of Insecticide Spraying (Indoor Residual Spraying) on the Risk of Malaria in Children
Table 3. Primary article description of insecticide spraying

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Country</th>
<th>Study Design</th>
<th>Sample</th>
<th>Population</th>
<th>I Intervention</th>
<th>C Comparison</th>
<th>O Outcome and Instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riedel et al. (2010)</td>
<td>Zambia</td>
<td>Cross-sectional</td>
<td>1,324</td>
<td>Toddlers</td>
<td>House has been sprayed with insecticide in the last 12 months</td>
<td>The house has not been sprayed with insecticide in the last 12 months</td>
<td>Malaria Rapid Diagnostic Test (RDT) with Paracheck Pf</td>
</tr>
<tr>
<td>Mushashu (2012)</td>
<td>Tanzania</td>
<td>Cross-sectional</td>
<td>391</td>
<td>Toddlers</td>
<td>The house is sprayed with insecticide</td>
<td>The house is not sprayed with insecticide</td>
<td>Malaria Rapid Diagnostic Test (RDT)</td>
</tr>
<tr>
<td>Wanzira et al. (2017)</td>
<td>Uganda</td>
<td>Cross-sectional</td>
<td>4,930</td>
<td>Toddlers</td>
<td>The house has been sprayed with insecticide in the last 6 months</td>
<td>The house has not been sprayed with insecticide in the last 6 months</td>
<td>Malaria Microscopic examination of thick and thin blood smears</td>
</tr>
<tr>
<td>Dahiru et al. (2018)</td>
<td>Nigeria</td>
<td>Cross-sectional</td>
<td>6,632</td>
<td>Children aged 6-59 months</td>
<td>The house has been sprayed with insecticide in the last 12 months</td>
<td>The house has not been sprayed with insecticide in the last 12 months</td>
<td>Malaria Microscopic examination</td>
</tr>
<tr>
<td>Morakinyo et al. (2018)</td>
<td>Nigeria</td>
<td>Cross-sectional</td>
<td>6,991</td>
<td>Toddlers</td>
<td>The house has been sprayed with insecticide in the last 12 months</td>
<td>The house has not been sprayed with insecticide in the last 12 months</td>
<td>Malaria Microscopic examination of thick and thin blood smears</td>
</tr>
<tr>
<td>Nawa et al. (2019) Bah (2020)</td>
<td>Zambia</td>
<td>Cross-sectional</td>
<td>10,131</td>
<td>Toddlers</td>
<td>The house is sprayed with insecticide</td>
<td>The house is not sprayed with insecticide</td>
<td>Malaria Microscopic examination</td>
</tr>
<tr>
<td></td>
<td>Sierra Leone</td>
<td>Cross-sectional</td>
<td>6,715</td>
<td>Children aged 0-59 months</td>
<td>The house has been sprayed with insecticide in the last 12 months</td>
<td>The house has not been sprayed with insecticide in the last 12 months</td>
<td>Malaria Microscopic examination of thick and thin blood smears</td>
</tr>
<tr>
<td>Ahmed et al. (2021)</td>
<td>Ethiopia</td>
<td>Cross-sectional</td>
<td>356</td>
<td>Toddlers</td>
<td>The house has been sprayed with insecticide in the last 6 months</td>
<td>The house has not been sprayed with insecticide in the last 6 months</td>
<td>Malaria Rapid Diagnostic Test (RDT)</td>
</tr>
</tbody>
</table>
DISCUSSION

This study is a systematic and meta-analysis study with the theme of the effect of using insecticide mosquito nets and spraying insecticides on the risk of malaria. Eligible primary study results were combined and statistically analyzed to estimate the influence of the independent variables on the effect of using insecticide mosquito nets and spraying insecticides and the dependent variable on malaria in children.

Based on age, toddlers were significantly 2.40 times more likely to be infected with malaria parasites compared to adults (aOR=2.40; 95% CI=1.72 to 3.35) (Gimnig et al., 2016). Malaria has an impact on the growth, development and general health of the children. Malaria infection increased the risk for stunting (aOR=1.9; 95% CI=1.2 to 2.9) and wasting (aOR=8.5; 95% CI=5.0 to 14.5) (Gari et al., 2018). Impaired growth and development is associated with anemia in children infected with malaria (Milner et al., 2020).

There are many factors that influence the incidence of malaria. Malaria infection was independently associated with the height of residence, the quality of the house structure, access to adequate mosquito nets per bed, the use of protective clothing at night, activities outside the house at night, and the presence of potential breeding grounds for mosquitoes around the house (Tesfahunegn et al., 2019; Mosha et al., 2020).

The analysis result of the primary study of the effect of using insecticide-treated bed nets on the risk of malaria in children showed that children who slept using insecticide mosquito nets had a 15% less risk of becoming infected with malaria than children who slept without using insecticide nets (aOR= 0.85; 95% CI=0.75 to 0.98; p= 0.020). Ashton et al. (2020) states that children who sleep using insecticide mosquito nets have a 43% lower risk of becoming infected with malaria than children who sleep without using insecticide mosquito nets (aOR= 0.57; 95% CI= 0.37 to 0.90). The use of insecticide mosquito nets reduces the risk of contact between children and mosquitoes. Reduction of the entomological index of mosquito density and human contact is associated with long-term use of insecticide mosquito nets (Mutuku et al., 2011).

Malaria vectors are able to detect insecticide mosquito nets from a distance. The insect olfactory system has a high sensitivity, therefore, it is possible that the concentration of insecticide in the air around the mosquito net can be detected by mosquitoes (Moiroux et al., 2017).

Although the nature of insecticide nets is to prevent individuals from contracting malaria, the use of insecticide nets can help prevent further transmission to household members and the closest community indirectly so that it has an impact on the community level (Fullman et al., 2013; Steinhardt et al., 2013).

Another finding in this meta-analysis was that children living in houses that were sprayed with insecticides had a 37% lower risk of becoming infected with malaria than children who lived in houses without insecticides spraying (aOR= 0.63; 95% CI= 0.49 to 0.79; p<0.001). Gimnig et al. (2016) stated that after two rounds of insecticide spraying, malaria parasitaemia infection was significantly 56% lower in those who received insecticide spraying compared to those who did not (aOR=0.63; 95% CI= 0.49 to 0.79; p<0.001). Gimnig et al. (2016) stated that after two rounds of insecticide spraying, malaria parasitaemia infection was significantly 56% lower in those who received insecticide spraying compared to those who did not (aOR=0.63; 95% CI= 0.49 to 0.79; p<0.001). In addition, clinical malaria infection was also 53% lower in those who received insecticide sprays compared to those who did not (aOR=0.47; 95% CI= 0.24 to 0.93).
Insecticides spraying can protect people from mosquitoes by preventing malaria mosquitoes from entering the house or killing mosquitoes when mosquitoes are resting on walls after sucking the blood (Fullman et al., 2013). Insecticides spraying has an excito-repellent effect, insecticides that are sprayed protect family members who live in the house by preventing mosquitoes from entering the house through direct contact with vapor particles at a distance (Briët et al., 2019).

The use of insecticides in controlling mosquito populations has proven to be effective but has negative impacts that need to be considered so that risks can be minimized or suppressed. Children who sleep under insecticide mosquito nets and live in homes that have been sprayed with insecticides are at risk of exposure to insecticide residues through inhalation (inhaling volatile residues), skin contact (touching residues on surfaces), and hand-to-mouth contact, thereby increasing the risk of ingesting residues (Moreno-Gómez et al., 2021). The application of insecticides with appropriate procedures, techniques, tools, and doses according to recommendations can reduce the risk of health hazards to humans and the environment (WHO, 2015; Damalas and Kourtoubaras, 2016) (WHO, 2015).

AUTHORS CONTRIBUTION
Arlina Azka is the main researcher who selected the topic, searched for and collected the data. Setyo Sri Rahardjo and Bhisma Murti analyzed the data and reviewed the documents.

FUNDING AND SPONSORSHIP
This study is a self-funded study.

CONFLICT OF INTEREST
None.

ACKNOWLEDGEMENT
The research would like to thank to database providers including PubMed, Google Scholar, Science Direct, ResearchGate and SpringerLink.

REFERENCES

Bah MS (2020). The relationship between malaria status in under-five children and some household demographic, socioeconomic and environmental factors associated with the disease in Sierra Leone. Thesis. Georgia State University.

